Jugar videojuegos de estrategia en tiempo real tiene efectos positivos en la memoria de trabajo

Autores/as

  • Germán Octavio López Riquelme Laboratorio de Socioneurobiología, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos.
  • Elia E. Soto Alba Facultad de Psicología, Universidad Nacional Autónoma de México
  • Carlos Ricardo Mata Bautista Laboratorio de Socioneurobiología, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos.
  • Rachid Marzoug Centro Universitario del Norte, Universidad de Guadalajara

DOI:

https://doi.org/10.32654/ConCienciaEPG/Eds.especial-7

Palabras clave:

memoria de trabajo, velocidad de procesamiento, videojuegos de estrategia en tiempo real, tarea n-back, entrenamiento cognitivo

Resumen

Los videojuegos de estrategia en tiempo real (VJ-ETR) requieren que los jugadores planeen estrategias reclutando capacidades cognitivas como atención, habilidades motoras, habilidades visuoespaciales y memoria de trabajo (MT). Ya que jugar VJ-ETR depende del mantenimiento de metas principales y submetas activas, así como de la revisión dinámica de esas metas conforme la situación lo requiere, el objetivo de este trabajo fue estudiar si jugadores expertos de VJ-ETR (JExp-ETR) tienen una mayor capacidad de MT que no-jugadores (No-ETR). Para ello, comparamos el desempeño entre JExp-ETR y No-ETR en MT y velocidad de procesamiento (VP) empleando el Wechsler Adult Intelligence Scale (WAIS-IV) y la tarea n-back. Los resultados muestran que los JExp-ETR tienen un mayor índice de MT y una mejor precisión en el n-back que los No-ETR, principalmente en el 3-back, pero no encontramos diferencias en VP. Además, también encontramos que los JExp-ETR que juegan más horas a la semana tienen un mayor índice de MT que los JExp-ETR que juegan menos horas. Los resultados son discutidos en el marco de la capacidad de la MT, la importancia de los VJ-ETR y sus efectos en la cognición.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Adachi, P. J. C., & Willoughby, T. (2013). More Than Just Fun and Games: The Longitudinal Relationships Between Strategic Video Games, Self-Reported Problem Solving Skills, and Academic Grades. Journal of Youth and Adolescence, 42(7), 1041–1052. https://doi.org/10.1007/s10964-013-9913-9

Adam, K. C. S., & Serences, J. T. (2019). Working memory: Flexible but finite. Neuron, 103(2), 184–185. https://doi.org/10.1016/j.neuron.2019.06.025

Aronen, E. T., Vuontela, V., Steenari, M. R., Salmi, J., & Carlson, S. (2005). Working memory, psychiatric symptoms, and academic performance at school. Neurobiology of Learning and Memory, 83(1), 33-42. https://doi.org/10.1016/j.nlm.2004.06.010

Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: a meta-analysis. Psychonomic Bulletin and Review, 22(2), 366–377. https://doi.org/10.3758/s13423-014-0699-x

Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839. https://doi.org/10.1038/nrn1201

Baddeley, A. (2007). Working memory, thought and action. Oxford University Press.

Ballesteros, S., Mayas, J., Prieto, A., Ruiz-Marquez, E., Toril, P., & Reales, J. M. (2017). Effects of video game training on measures of selective attention and working memory in older adults: results from a randomized controlled trial. Frontiers in Aging Neuroscience, 9, 354. https://doi.org/10.3389/fnagi.2017.00354

Barr, M. (2017). Video games can develop graduate skills in higher education students: A randomised trial. Computers and Education, 113, 86–97. https://doi.org/10.1016/j.compedu.2017.05.016

Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23(4), 765.

Bavelier, D., & Green, C. S. (2019). Enhancing attentional control: Lessons from action video games. Neuron, 104(1), 147–163. https://doi.org/10.1016/j.neuron.2019.09.031

Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: Learning to learn and action video games. Annual Review of Neuroscience 35, 391–416. https://doi.org/10.1146/annurev-neuro-060909-152832

Bejjanki, V. R., Zhang, R., Li, R., Pouget, A., Green, C. S., Lu, Z. L., & Bavelier, D. (2014). Action video game play facilitates the development of better perceptual templates. Proceedings of the National Academy of Sciences, 111(47), 16961-16966. https://doi.org/10.1073/pnas.1417056111

Blacker, K. J., & Curby, K. M. (2013). Enhanced visual short-term memory in action video game players. Attention, Perception, and Psychophysics, 75(6), 1128–1136. https://doi.org/10.3758/s13414-013-0487-0

Blacker, K. J., Curby, K. M., Klobusicky, E., & Chein, J. M. (2014). Effects of action video game training on visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 1992–2004. https://doi.org/10.1037/a0037556

Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398. https://doi.org/10.1016/j.actpsy.2008.09.005

Bouchacourt, F., & Buschman, T. J. (2019). A Flexible Model of Working Memory. Neuron, 103(1), 147-160.e8. https://doi.org/10.1016/j.neuron.2019.04.020

Choi, E., Shin, S. H., Ryu, J. K., Jung, K. I., Kim, S. Y., & Park, M. H. (2020). Commercial video games and cognitive functions: Video game genres and modulating factors of cognitive enhancement. Behavioral and Brain Functions, 16(1), 1–14. https://doi.org/10.1186/s12993-020-0165-z

Clark, K., Fleck, M. S., & Mitroff, S. R. (2011). Enhanced change detection performance reveals improved strategy use in avid action video game players. Acta Psychologica, 136(1), 67–72. https://doi.org/10.1016/j.actpsy.2010.10.003

Colzato, L. S., van den Wildenberg, W. P. M., Zmigrod, S., & Hommel, B. (2013). Action video gaming and cognitive control: Playing first person shooter games is associated with improvement in working memory but not action inhibition. Psychological Research, 77(2), 234–239. https://doi.org/10.1007/s00426-012-0415-2

Dale, G., & Green, C. S. (2017). Associations between avid action and real-time strategy game play and cognitive performance: a pilot study. Journal of Cognitive Enhancement, 1(3), 295–317. https://doi.org/10.1007/s41465-017-0021-8

Dye, M. W., Green, C. S., & Bavelier, D. (2009). Increasing speed of processing with action video games. Current Directions in Psychological Science, 18(6), 321-326. https://doi.org/10.1111/j.1467-8721.2009.01660.x

Finc, K., Bonna, K., He, X., Lydon-Staley, D. M., Kühn, S., Duch, W., & Bassett, D. S. (2020). Dynamic reconfiguration of functional brain networks during working memory training. Nature Communications, 11(1), 1–15. https://doi.org/10.1038/s41467-020-15631-z

Fry, A. F., & Hale, S. (2000). Relationships among processing speed, working memory, and fluid intelligence in children. Biological Psychology, 54(1-3), 1-34. https://doi.org/10.1016/S0301-0511(00)00051-X

Gajewski, P. D., Hanisch, E., Falkenstein, M., Thönes, S., & Wascher, E. (2018). What does the n-back task measure as we get older? Relations between working-memory measures and other cognitive functions across the lifespan. Frontiers in Psychology, 9, 2208. https://doi.org/10.3389/fpsyg.2018.02208

Gan, X., Yao, Y., Liu, H., Zong, X., Cui, R., Qiu, N., Xie, J., Jiang, D., Ying, S., Tang, X., Dong, L., Gong, D., Ma, W., & Liu, T. (2020). Action real-time strategy gaming experience related to increased attentional resources: an attentional blink study. Frontiers in Human Neuroscience, 14, 101. https://doi.org/10.3389/fnhum.2020.00101

Gee, J. P. (2003). What video games have to teach us about learning and literacy. Palgrave Macmillan.

Gevins, A., & Smith, M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cerebral Cortex, 10(9), 829-839. https://doi.org/10.1093/cercor/10.9.829

Glass, B. D., Maddox, W. T., & Love, B. C. (2013). Real-Time Strategy Game Training: Emergence of a Cognitive Flexibility Trait. PLoS ONE, 8(8), 70350. https://doi.org/10.1371/journal.pone.0070350

Gong, D., He, H., Ma, W., Liu, D., Huang, M., Dong, L., Gong, J., Li, J., Luo, C., & Yao, D. (2016). Functional Integration between Salience and Central Executive Networks: A Role for Action Video Game Experience. Neural Plasticity, 2016. https://doi.org/10.1155/2016/9803165

Gozli, D. G., Bavelier, D., & Pratt, J. (2014). The effect of action video game playing on sensorimotor learning: Evidence from a movement tracking task. Human Movement Science, 38, 152-162. https://doi.org/10.1016/j.humov.2014.09.004

Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534-537. doi: 10.1038/nature01647

Green, C. S., & Bavelier, D. (2006). Enumeration versus multiple object tracking: the case of action video game players. Cognition, 101(1), 217–245. https://doi.org/10.1016/j.cognition.2005.10.004

Green, C. S., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of vision: Research article. Psychological Science, 18(1), 88–94. https://doi.org/10.1111/j.1467-9280.2007.01853.x

Green, C. S., & Bavelier, D. (2015). Action video game training for cognitive enhancement. Current Opinion in Behavioral Sciences, 4, 103–108. https://doi.org/10.1016/j.cobeha.2015.04.012

Hempel, A., Giesel, F. L., Garcia Caraballo, N. M., Amann, M., Meyer, H., Wüstenberg, T., Essig, M., & Schröder, J. (2004). Plasticity of Cortical Activation Related to Working Memory during Training. American Journal of Psychiatry, 161(4), 745–747. https://doi.org/10.1176/appi.ajp.161.4.745

Homer, B. D., Plass, J. L., Raffaele, C., Ober, T. M., & Ali, A. (2018). Improving high school students' executive functions through digital game play. Computers & Education, 117, 50-58. https://doi.org/10.1016/j.compedu.2017.09.011

Huang, V., Young, M., & Fiocco, A. J. (2017). The Association between Video Game Play and Cognitive Function: Does Gaming Platform Matter? Cyberpsychology, Behavior, and Social Networking, 20(11), 689–694. https://doi.org/10.1089/cyber.2017.0241

Jaeggi, S. M., Perrig, W. J., Jonides, J., & Buschkuehl, M. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Science, 105, 6829–6833. https://doi.org/https://doi.org/10.1073/pnas.0801268105

Jolles, D. D., Grol, M. J., Van Buchem, M. A., Rombouts, S. A. R. B., & Crone, E. A. (2010). Practice effects in the brain: Changes in cerebral activation after working memory practice depend on task demands. NeuroImage, 52(2), 658–668. https://doi.org/10.1016/j.neuroimage.2010.04.028

Kane, M. J., Conway, A. R., Miura, T. K., & Colflesh, G. J. (2007). Working memory, attention control, and the N-back task: a question of construct validity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), 615-622. https://doi.org/10.1037/0278-7393.33.3.615

Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information. Journal of Experimental Psychology, 55(4), 352–358. https://doi.org/10.1037/h0043688

Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14(7), 317–324. https://doi.org/10.1016/j.tics.2010.05.002

Kowalczyk, N., Shi, F., Magnuski, M., Skorko, M., Dobrowolski, P., Kossowski, B., Marchewka, A., Bielecki, M., Kossut, M., & Brzezicka, A. (2017). Real‐time strategy video game experience and structural connectivity – A diffusion tensor imaging study. Human Brain Mapping, 39(9), 3742-3758. https://doi.org/10.1002/hbm.24208

Kühn, S., Gallinat, J., & Mascherek, A. (2019). Effects of computer gaming on cognition, brain structure, and function: A critical reflection on existing literature. Dialogues in Clinical Neuroscience, 21(3), 319–330. https://doi.org/10.31887/DCNS.2019.21.3/skuehn

Li, X., Cheng, X., Li, J., Pan, Y., Hu, Y., & Ku, Y. (2015). Examination of mechanisms underlying enhanced memory performance in action video game players: a pilot study. Frontiers in Psychology, 6, 843. https://doi.org/10.3389/fpsyg.2015.00843

Lillard, A. S., & Erisir, A. (2011). Old dogs learning new tricks: Neuroplasticity beyond the juvenile period. Developmental Review, 31, 207–239. https://doi.org/10.1016/j.dr.2011.07.008

Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17, 391–400. https://doi.org/10.1016/j.tics.2013.06.006

Malinovitch, T., Jakoby, H., & Ahissar, M. (2021). Training-induced improvement in working memory tasks results from switching to efficient strategies. Psychonomic Bulletin and Review, 28(2), 526–536. https://doi.org/10.3758/s13423-020-01824-6

Miller, K. M., Price, C. C., Okun, M. S., Montijo, H., & Bowers, D. Is the n-back task a Valid neuropsychological measure for assessing working memory? Archives of Clinical Neuropsychology, 24, 711–717. https://doi.org/10.1093/arclin/acp063

Moisala, M., Salmela, V., Hietajärvi, L., Carlson, S., Vuontela, V., Lonka, K., Hakkarainen, K., Salmela-Aro, K., & Alho, K. (2017). Gaming is related to enhanced working memory performance and task-related cortical activity. Brain Research, 1655, 204–215. https://doi.org/10.1016/j.brainres.2016.10.027

Mueller, S. T. (2014). PEBL: The psychology experiment building language (Version 0.14)[Computer experiment programming language]. https://doi.org/10.1007/s00761-001-0265-9

Oberauer, K. (2005). Binding and inhibition in working memory: individual and age differences in short-term recognition. Journal of Experimental Psychology: General, 134(3), 368. https://doi.org/10.1037/0096-3445.134.3.368

Oei, A. C., & Patterson, M. D. (2013). Enhancing cognition with video games: A multiple game training study. PLoS ONE, 8(3), e58546. https://doi.org/10.1371/journal.pone.0058546

Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79. https://doi.org/10.1038/nn1165

Palaus, M., Marron, E. M., Viejo-Sobera, R., & Redolar-Ripoll, D. (2017). Neural basis of video gaming: A systematic review. Frontiers in Human Neuroscience, 11, 248. https://doi.org/10.3389/fnhum.2017.00248

Roberts, R., & Gibson, E. (2002). Individual differences in sentence memory. Journal of Psycholinguistic Research, 31(6), 573-598. https://doi.org/10.1023/A:1021213004302

Sala, G., & Gobet, F. (2019). Cognitive training does not enhance general cognition. Trends in Cognitive Sciences, 23, 9–20). https://doi.org/10.1016/j.tics.2018.10.004

Shipstead, Z., Harrison, T. L., & Engle, R. W. (2016). Working memory capacity and fluid intelligence: Maintenance and disengagement. Perspectives on Psychological Science, 11(6), 771-799. https://doi.org/10.1177/1745691616650647

Simmering, V. R., & Perone, S. (2013). Working memory capacity as a dynamic process. Frontiers in Psychology, 3, 567. https://doi.org/10.3389/fpsyg.2012.00567

Soveri, A., Antfolk, J., Karlsson, L., Salo, B., & Laine, M. (2017). Working memory training revisited: A multi-level meta-analysis of n-back training studies. Psychonomic Bulletin and Review, 24(4), 1077–1096. https://doi.org/10.3758/s13423-016-1217-0

Steenbergen, L., Sellaro, R., Stock, A. K., Beste, C., & Colzato, L. S. (2015). Action video gaming and cognitive control: playing first person shooter games is associated with improved action cascading but not inhibition. PloS ONE, 10(12), e0144364. https://doi.org/10.1371/journal.pone.0144364

Tang, H., Qi, X. L., Riley, M. R., & Constantinidis, C. (2019). Working memory capacity is enhanced by distributed prefrontal activation and invariant temporal dynamics. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 7095–7100. https://doi.org/10.1073/pnas.1817278116

Taya, F., Sun, Y., Babiioni, F., Thakor, N., & Bezerianos, A. (2015). Brain enhancement through cognitive training: A new insight from brain connectome. Frontiers in Systems Neuroscience. https://doi.org/10.3389/fnsys.2015.00044

Toril, P., Reales, J. M., Mayas, J., & Ballesteros, S. (2016). Video game training enhances visuospatial working memory and episodic memory in older adults. Frontiers in Human Neuroscience, 10, 206. https://doi.org/10.3389/fnhum.2016.00206

Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503. https://doi.org/10.1038/nature04171

Waris, O., Jaeggi, S. M., Seitz, A. R., Lehtonen, M., Soveri, A., Lukasik, K. M., Söderström, U., Hoffing, R. A. C., & Laine, M. (2019). Video gaming and working memory: A large-scale cross-sectional correlative study. Computers in Human Behavior, 97, 94–103. https://doi.org/10.1016/j.chb.2019.03.005

Wechsler, D. (2013). Escala Wechsler de Inteligencia para Adultos IV. Manual Moderno.

Wilhelm, O., Hildebrandt, A. H., & Oberauer, K. (2013). What is working memory capacity, and how can we measure it?. Frontiers in Psychology, 4, 433. https://doi.org/10.3389/fpsyg.2013.00433

Willis, S. L., & Schaie, K. W. (2009). Cognitive training and plasticity: theoretical perspective and methodological consequences. Restorative Neurology and Neuroscience, 27(5), 375-389. https://doi.org/10.3233/RNN-2009-0527

Wilms, I. L., Petersen, A., & Vangkilde, S. (2013). Intensive video gaming improves encoding speed to visual short-term memory in young male adults. Acta Psychologica, 142(1), 108–118. https://doi.org/10.1016/j.actpsy.2012.11.003

Yao, Y., Cui, R., Li, Y., Zeng, L., Jiang, J., Qiu, N., Dong, L., Gong, D., Yan, G., Ma, W., & Liu, T. (2020). Action Real-Time Strategy Gaming Experience Related to Enhanced Capacity of Visual Working Memory. Frontiers in Human Neuroscience, 14, 333. https://doi.org/10.3389/fnhum.2020.00333

Zhang, Y., Song, H., Liu, X., Tang, D., Chen, Y. E., & Zhang, X. (2017). Language learning enhanced by massive multiple online role-playing games (MMORPGs) and the underlying behavioral and neural mechanisms. Frontiers in Human Neuroscience, 11, 95. https://doi.org/10.3389/fnhum.2017.00095

Zhang, R. Y., Chopin, A., Shibata, K., Lu, Z. L., Jaeggi, S. M., Buschkuehl, M., Shawn Green, C., & Bavelier, D. (2021). Action video game play facilitates “learning to learn”. Communications Biology, 4(1), 1-10. https://doi.org/10.1038/s42003-021-02652-7

Zar, J.H. (2010). Biostatistical analysis. Pearson.

Descargas

Publicado

09-04-2022

Número

Sección

Artículos de investigación

Cómo citar

López-Riquelme, G. O., Soto-Alba, E. E., Mata-Bautista, C. R., & Marzoug, R. . (2022). Jugar videojuegos de estrategia en tiempo real tiene efectos positivos en la memoria de trabajo. Revista Iberoamericana ConCiencia, 7(1), 143-175. https://doi.org/10.32654/ConCienciaEPG/Eds.especial-7

PLUMX Metrcis

Artículos similares

71-80 de 165

También puede Iniciar una búsqueda de similitud avanzada para este artículo.